The correct option is D (2−√2,3−√52)∪(3−√52,2+√2)∪{2}
For sin−1(3x−2−x2)⇒−1<3x−2−x2<1
3x−2−x2<1 imaginary solution
3x−2−x2>−1⇒xϵ{3−√52,3+√52} ...(1)
And for cos−1(x2−4x+3)⇒−1<(x2−4x+3)<1
(x2−4x+3)<1⇒x=2 ...(2)
x2−4x+3>−1⇒xϵ{2−√2,2+√2} ...(3)
From (1),(2) and (3)
xϵ(2−√2,3−√52)∪(3−√52,2+√2)∪{2}