The correct option is D 3
dydx+3cosecx.y=tan(x) ...(after dividing by sin(x)).
Then the above differential equation is of the form,
dydx+P(x).y=Q(x).
Hence
IF=e∫P(x).dx
=e∫3(cosec(x)).dx
=e−3ln|cosec(x)+cot(x)|
=1(cosec(x)+cot(x))3
=sin3(x)(1+cos(x))3
=8sin3(x2).cos3(x2)8cos6(x2)
=tan3(x2).
Now
IF.y=∫Q(x).IF.dx
Hence
k=3.