wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

y=(cotx)sinx+(tanx)cosx.Find dy/dx

A
sinx(cotx)sinx1(cosec2x)+(cotx)sinx(logcotx)cosx+cosx(tanx)cosx1sec2x+(tanx)cosx(logtanx)(sinx)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
sinx(cotx)sinx1(cosec2x)+cosx(tanx)cosx1sec2x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sinx(cotx)sinx1(sec2x)+(cotx)sinx(logcotx)cosx+cosx(tanx)cosx+1cosec2x+(tanx)cosx(logtanx)(sinx)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A sinx(cotx)sinx1(cosec2x)+(cotx)sinx(logcotx)cosx+cosx(tanx)cosx1sec2x+(tanx)cosx(logtanx)(sinx)
Given y=(cotx)sinx+(tanx)cosx

Let u=(cotx)sinx

Taking log on both sides

logu=sinxlog(cotx)

Differentiating w.r.t. x, we get,

1ududx=sinxcotx(cosec2x)+cosxlogcotx

dudx=sinx(cotx)sinx1(cosec2x)+(cotx)sinxcosxlogcotx
Now, v=(tanx)cosx

Taking log on both sides

logv=cosxlog(tanx)

Differentiating w.r.t. x, we get,

1vdvdx=cosxtanx(sec2x)sinxlogtanx

dvdx=cosx(tanx)cosx1(sec2x)+(tanx)cosx(sinx)logtanx
Since, y=u+v

dydx=dudx+dvdx

dydx=sinx(cotx)sinx1(cosec2x)+(cotx)sinxcosxlogcotx+
cosx(tanx)cosx1(sec2x)+(tanx)cosx(sinx)logtanx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon