The correct option is C (x+1x)
Given: (x2+1x2+2−2x−2x)(x+1x−2)
Consider the numerator,
x2+1x2+2−2x−2x=(x2+2+1x2)−2(x+1x)
[Using identity: (a+b)2=a2+2ab+b2]
=(x+1x)2−2(x+1x)
=(x+1x)(x+1x−2)
Therefore, (x2+1x2+2−2x−2x)(x+1x−2)=(x+1x)(x+1x−2)(x+1x−2)
=(x+1x)