Divide x(3x2−27) by 3(x−3)
x + 3
x2 + 3x
x+3x2
x2 + 3
x(3x2−27)=3x(x2−9)=3x(x+3)(x−3)
3x(x+3)(x−3)3(x−3)=x(x+3)=x(x+3)=x2+3x.
Dividing x(3x2−27) by 3(x−3) gives x2+3x.
State whether the statement is true or false. Dividing x(3x2−27) by 3(x−3) gives x2+3x.
1)∫x3+3x+4√xdx
2)∫√x(3x2+2x+3)dx
3)∫(2x2−3sinx+5√x)dx
4) ∫sec2xcsc2xdx