CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

Draw the graph of $$2x^2-11x+12$$.


Solution

$$2{x}^{2}-11x+12$$
$$\Rightarrow$$ $$2{x}^{2}-8x-3x+12$$
$$\Rightarrow$$ $$2x(x-4)-3(x-4)$$
$$\Rightarrow$$ $$(2x-3)(x-4)=0$$
WE know that $$[P]$$ is discontinuous at integral value of $$P$$
ow $$\sin x+\cos x=\sqrt 2.\sin{(x+\cfrac{\pi}{4})}$$
$$[\sin x+\cos x]=[\sqrt{2}\sin{(x+\cfrac{\pi}{4})}]$$ will be discontinuous at integral values of $$[\sqrt {2}\sin {(x+\cfrac{\pi}{4})}]$$ in the interval $$(0,2\pi)$$
$$x=\cfrac{\pi}{2},\cfrac{3\pi}{4},\pi,\cfrac{3\pi}{2},\cfrac{7\pi}{4}$$

1357794_1194337_ans_6aa772a72a104b6bbe77990276d93e53.PNG

Maths

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image