We have,
esinx−e−sinx=4
Let esinx=y
y−y−1=4
y−1y=4
y2−1=4y
y2−4y−1=0
Compare that and we get,
ay2+by+c=0
a=1,b=−4,c−1
Using quadratic equation formula,
Then,
y=−b±√b2−4ac2a
y=4±√16−4×1×(−1)2×1
y=4±√202
y=2±√5
Now, esinx=2±√5
−1≤sinx≤1
1e≤esinx≤e
Hence, this is the answer.