Eliminate x,y,z from the equations yz=a2,zx=b2,xy=c2,x2+y2+z2=d2.
Open in App
Solution
Given equations are yz=a2,zx=b2,xy=c2,x2+y2+z2=d2
⇒xyz=a2x, yxz=b2y, xyz=c2z We can call all these equal to some constant k i.e a2x=b2y=c2z=k Therefore, x=ka2,y=kb2,z=kc2 Given x2+y2+z2=d2 Substitute x,y and z in this equation, we get k2a4+k2b4+k2c4=d2 k2(a4b4+c4a4+b4c4a4b4c4)=d2 k=da2b2c2√a4b4+c4a4+b4c4 We know that, b2y=k Therefore, y=da2c2√a4b4+c4a4+b4c4 and z=da2b2√a4b4+c4a4+b4c4 Also, yz=a2 ∴d2a4b2c2a4b4+c4b4+a4c4=a2 The eliminated equation is d2a2b2c2=a4b4+c4b4+a4c4