1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Algebra of Derivatives
Enter '1' if ...
Question
Enter '1' if following statement is true otherwise enter '0'.
∫
a
x
+
tan
−
1
x
[
x
2
+
2
x
2
+
1
]
d
x
=
a
x
+
tan
−
1
(
x
)
ln
(
a
)
+
c
Open in App
Solution
Let
I
=
∫
a
x
+
tan
−
1
(
x
)
x
2
+
2
x
2
+
1
d
x
substitute
u
=
x
+
tan
−
1
(
x
)
d
u
=
1
+
1
1
+
x
2
d
x
=
x
2
+
2
x
2
+
1
d
x
I
=
∫
a
u
d
u
=
a
u
ln
(
a
)
=
a
x
+
tan
−
1
(
x
)
ln
(
a
)
+
C
Suggest Corrections
0
Similar questions
Q.
∫
d
x
x
4
√
a
2
+
x
2
=
1
a
4
[
1
x
√
a
2
+
x
2
−
1
3
x
3
(
a
2
+
x
2
)
3
/
2
]
. If this is true enter 1, else enter 0.
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
If
0
<
x
<
1
, then
√
1
+
x
2
[
{
x
c
o
s
(
c
o
t
−
1
x
)
+
s
i
n
(
c
o
t
−
1
x
)
}
2
−
1
]
1
/
2
is equal to
(a)
x
√
1
+
x
2
(b)
x
(c)
x
√
1
+
x
2
(d)
√
1
+
x
2
Q.
equals
A.
x
tan
−1
(
x
+ 1) + C
B. tan
− 1
(
x
+ 1) + C
C. (
x
+ 1) tan
−1
x
+ C
D. tan
−1
x
+ C