Equation of line of shortest distance between the skew lines. ¯r=(3^i+5^j+7^k)+λ(^i−2^j+^k) ¯r=(−^i−^j−^k)+μ(7^i−6^j+^k)
A
¯r=(3i+5j+7k)+t(2i+3j+4k)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
¯r=(3i−5j+7k)+t(2i+3j+4k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
¯r=(−3i+5j−7k)+t(2i+3j+4k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
¯r=(3i−5j−7k)+t(2i+3j+4k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A¯r=(3i+5j+7k)+t(2i+3j+4k)
¯PQ=(P.VofQ)−(P.V.ofP) =L2−L1 =(7μ−λ−4)i+(−6μ+2λ−6)j)+(μ−λ−8)K ¯PQ is perpendicular to L1⇒(PQ).L1=0 ⇒10μ−3λ=0→(1) ¯PQ is perpendicular to L2=(PQ).L2=0 =⇒43μ−10λ=0→(1) On solving (1) & (2) we get λ=0,μ=0⇒PQ=−4i−6j−8k Since PQ passes through P and parallel to ¯PQ we have ¯r=(3i+5j+7k)+0(i−2j+k)+λ(−4i−6j−8k) =(3i+5j+7k)+t(2i+3j+4k) where t=−2λ