The correct option is
A 3(x2+y2)−14x−7y−14=0Let the equation of the circle be P(x,y)=x2+y2+2gx+2fy+c=0 ......(1)
The length of tangent from a point (a,b)=√P(a,b)
Accordingly the given tangents yield,
At (1,0) is 12+0+2g+0+c=1
⇒2g+c=0 ......(2)
At (0,2) is 0+22+0+4f+c=(√7)2
⇒4f+c=7−4=3 ......(3)
At (2,2) is 32+22+6g+4f+c=(√2)2
⇒6g+4f+c=2−9−4=−11 ......(4)
Eliminating g,f and c we get
⇒∣∣
∣
∣
∣∣x2+y22x2y10201−304111641∣∣
∣
∣
∣∣=0
⇒x2+y2∣∣
∣∣201041641∣∣
∣∣−2x∣∣
∣∣001−3411141∣∣
∣∣+2y∣∣
∣∣021−3011161∣∣
∣∣−1∣∣
∣∣020−3041164∣∣
∣∣=0
⇒(x2+y2)[2(4−4)−0+1(0−24)]−2x[0−0+1(−12−44)]
+2y[0−2(−3−11)+1(−18−0)]−1[0−2(−12−44)]=0
⇒−24(x2+y2)+112x+56y+112=0
Divide both sides by −8 we get
⇒3(x2+y2)−14x−7y−14=0