The correct option is B 15x2+15y2−94x+18y+55=0
Generalequofcircle:x2+y2+2gx+2fy+c=0–––––––––––––––––––––––––––––––Now,theequispassesthrough(1,−2)⇒1+4+2g−4f+c=0∴5+2g−4f+c=0−−−−−−(i)Again,passesthrough(4,−3)⇒16+9+8g−6f+c=0∴25+8g−6f+c=0−−−−−−−(ii)Since,thecirclecenteris:(−g,−f)substituteinline3x+4y=7⇒3(−g)+4(−f)=7−−−−−−−−(iii)⇒−3g−4f=7∴g=4f−73ifsubstitutevalueof′g′intoequ(i)&(ii),wegetequintermoff&c.thenwefind,g=−4715,f=35,c=113since,substitutethesevaluein:x2+y2+2gx+2fy+c=0⇒x2+y2+2×(−4715)x+2(35)y+113=0⇒x2+y2−9415x+65y+113=0∴15x2+15y2−94x+18y+55=0So,thatthecorrectoptionisB.