1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Implicit Differentiation
Equation of t...
Question
Equation of the pair of tangents drawn from the origin to the circle
x
2
+
y
2
+
2
g
x
+
2
f
y
+
c
=
0
is
A
g
x
+
f
y
+
c
(
x
2
+
y
2
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(
g
x
+
f
y
)
2
=
x
2
+
y
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(
g
x
+
f
y
)
2
=
c
2
(
x
2
+
y
2
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(
g
x
+
f
y
)
2
=
c
(
x
2
+
y
2
)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is
D
(
g
x
+
f
y
)
2
=
c
(
x
2
+
y
2
)
The equation of pair of tangent to the circle
x
2
+
y
2
+
2
g
x
+
2
f
y
+
c
=
0
from the point
(
x
1
,
y
1
)
is
(
x
2
+
y
2
+
2
g
x
+
2
f
y
+
c
)
(
x
1
2
+
y
1
2
+
2
g
x
1
+
2
f
y
1
+
c
)
=
[
x
x
1
+
y
y
1
+
g
(
x
+
x
1
)
+
f
(
y
+
y
1
)
+
c
]
2
Thus, the equation of pair of the tangent to the circle
x
2
+
y
2
+
2
g
x
+
2
f
y
+
c
=
0
from the origin is
(
x
2
+
y
2
+
2
g
x
+
2
f
y
+
c
)
(
0
+
0
+
2
g
×
0
+
2
f
×
0
+
c
)
=
[
x
×
0
+
y
×
0
+
g
(
x
+
×
0
)
+
f
(
y
+
×
0
)
]
2
⇒
c
(
x
2
+
y
2
+
2
g
x
+
2
f
y
+
c
)
=
(
g
x
+
f
y
+
c
)
2
⇒
c
x
2
+
c
y
2
+
2
c
g
x
+
2
c
f
y
+
c
2
=
g
2
x
2
+
f
2
y
2
+
c
2
+
2
g
f
x
y
+
2
f
y
c
+
2
g
c
x
⇒
c
x
2
+
c
y
2
=
(
g
x
)
2
+
(
f
y
)
2
+
2
g
f
x
y
⇒
c
(
x
2
+
y
2
)
=
(
g
x
+
f
y
)
2
or
(
g
x
+
f
y
)
2
=
c
(
x
2
+
y
2
)
Suggest Corrections
0
Similar questions
Q.
Equation of the pair of tangents drawn from the origin to the circle
x
2
+
y
2
+
2
g
x
+
2
f
y
+
c
=
0
is