The correct option is
A −1Let, 1+cosπ4=2cos2π8 and ..........(1)
sinπ4=2sinπ8cosπ8.......(2)
GIven: ⎛⎝1+cosΠ4−isinΠ41+cosΠ4+isinΠ4⎞⎠4
=(2cos2(π/8)−i2sin(π/8)cos(π/8)2cos2(π/8)+i2sin(π/8)cos(π/8))4
=(2cos(π/8)[cos(π/8)−isin(π/8)]2cos(π/8)[cos(π/8)+isin(π/8)])4
=(e−i(π/8)ei(π/8))4=(e−i(π/4))4=e−iπ=cosπ−isinπ=−1.