Byju's Answer
Standard XII
Mathematics
Definite Integral as Limit of Sum
Evaluate ; ...
Question
Evaluate ;
∫
a
0
√
x
√
x
+
√
a
−
x
d
x
.
Open in App
Solution
∫
a
0
√
x
√
x
+
√
a
−
x
d
x
f
(
x
)
=
∫
a
0
√
x
√
x
+
√
a
−
x
d
x
f
(
a
−
x
)
=
∫
a
0
√
a
−
x
√
a
−
x
+
√
x
d
x
⇒
f
(
x
)
=
f
(
a
−
x
)
[
A
∫
a
0
f
(
x
)
=
f
(
a
−
x
)
[
A
∫
a
0
f
(
a
−
x
)
]
⇒
2
f
(
x
)
=
1
f
(
x
)
=
1
/
2
Suggest Corrections
0
Similar questions
Q.
Prove that
∫
a
0
f
(
x
)
d
x
=
∫
a
0
f
(
a
−
x
)
d
x
and hence evaluate
∫
a
0
√
x
√
x
+
√
a
−
x
d
x
.
Q.
Evaluate the integral
∫
a
0
√
a
+
x
a
−
x
d
x
Q.
By using properties of definite integrals, evaluate the integrals
∫
a
0
√
x
√
x
+
√
a
−
x
d
x
.
Q.
By using the properties of definite integrals, evaluate the integral
∫
a
0
√
x
√
x
+
√
a
−
x
d
x
Q.
a
∫
0
√
x
√
x
+
√
a
−
x
d
x
=
View More
Related Videos
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Explore more
Definite Integral as Limit of Sum
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app