Byju's Answer
Standard XII
Mathematics
Integration Using Substitution
Prove that ...
Question
Prove that
∫
a
0
f
(
x
)
d
x
=
∫
a
0
f
(
a
−
x
)
d
x
and hence evaluate
∫
a
0
√
x
√
x
+
√
a
−
x
d
x
.
Open in App
Solution
Let
I
=
∫
a
0
f
(
x
)
d
x
Put
x
=
a
−
t
⇒
d
x
=
−
d
t
when
x
=
0
⇒
t
=
a
; when
x
=
a
⇒
t
=
0
I
=
∫
0
a
f
(
a
−
t
)
(
−
d
t
)
=
∫
a
0
f
(
a
−
t
)
d
t
(using property of definite integrals)
=
∫
a
0
f
(
a
−
x
)
d
x
(changing variable
t
to
x
)
Consider
I
=
∫
a
0
√
x
d
x
√
x
+
√
a
−
x
.
.
.
.
(
1
)
=
∫
a
0
√
a
−
x
d
x
√
a
−
x
+
√
a
−
(
a
−
x
)
=
∫
a
0
√
a
−
x
d
x
√
a
−
x
+
√
a
−
a
+
x
I
=
∫
a
0
√
a
−
x
d
x
√
a
−
x
+
√
x
.
.
.
.
.
(
2
)
Adding
(
1
)
and
(
2
)
we get
2
I
=
∫
a
0
√
x
+
√
a
−
x
√
a
−
x
+
√
x
d
x
=
∫
a
0
1
d
x
=
x
|
a
0
∴
I
=
a
2
.
Suggest Corrections
0
Similar questions
Q.
Prove that
∫
a
0
f
(
x
)
d
x
=
∫
a
0
f
(
a
−
x
)
d
x
,
hence evaluate
∫
π
0
x
sin
x
1
+
cos
2
x
d
x
.
Q.
Prove that
∫
a
0
f
(
x
)
d
x
=
∫
a
0
f
(
a
−
x
)
d
x
and hence evaluate
∫
π
/
2
0
(
2
log
sin
x
−
log
sin
2
x
)
Q.
Prove that
∫
a
−
a
f
(
x
)
d
x
=
{
2
∫
a
0
f
(
x
)
d
x
,
i
f
f
i
s
a
n
e
v
e
n
f
u
n
c
t
i
o
n
0
i
f
f
i
s
a
n
o
d
d
f
u
n
c
t
i
o
n
and hence evaluate
∫
1
−
1
sin
7
x
.
cos
4
x
d
x
Q.
Evaluate ;
∫
a
0
√
x
√
x
+
√
a
−
x
d
x
.
Q.
Assertion :The value of
∫
π
0
x
f
(
sin
x
)
d
x
is
π
2
∫
π
0
f
(
sin
x
)
d
x
or
π
∫
π
/
2
0
f
(
sin
x
)
d
x
Reason:
∫
a
0
f
(
x
)
d
x
=
∫
a
0
f
(
a
−
x
)
d
x
and
∫
2
a
0
f
(
x
)
d
x
=
2
∫
a
0
f
(
x
)
d
x
If
f
(
2
a
−
x
)
=
f
(
x
)
View More
Related Videos
MATHEMATICS
Watch in App
Explore more
Integration Using Substitution
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app