∫1√1−sinxdx
=∫1√sin2x2+cos2x2−2sinx2cosx2dx
=∫1√(sinx2−cosx2)2dx
=∫1sinx2−cosx2dx
=1√2∫dxsinx2cosπ4−cosx2sinπ4
=1√2∫dxsin(x2−π4)
=1√2∫cosec(x2−π4)dx
=1√2log∣∣∣cosec(x2−π4)−cot(x2−π4)∣∣∣+c
=1√2log∣∣
∣
∣
∣∣1−cos(x2−π4)sin(x2−π4)∣∣
∣
∣
∣∣+c
=1√2log∣∣
∣
∣
∣∣2sin2(x4−π8)2sin(x4−π8)cos(x4−π8)∣∣
∣
∣
∣∣+c
=1√2log∣∣∣tan(x4−π8)∣∣∣+c