The correct option is
C √x−1√x+1+c∫1(x−1)√x2−1dx
Substitute x=secu
dx=secu+tanudu
=secutanu(secu+1)√sec2y−1du
sec2u−1=tan2u
=secusecu+1du=∫(secu+1secu+1−1secu+1)du
=∫(1−1secu+1)du
=u−∫1tan2u2+11−tan2u2+1du
v=tanu2
⇒du=2sec2u2
du=2v2+1dv
=u−∫(v−1)(v+1)v2+1dv
=u−∫v2+1v2+1−2v2+1dv=u−∫1−2v2+1dv
=u−(v−2tan−1(v))
Resubstituting v=tanu2
=u−(tanu2−2tan−1(tanu2))
=tanu2
Resubstituting u=sec1(x)
tan(sec−1(x)2)=√x−1√x+1
∴∫1(x+1)√x2−1dx=√x−1√x+1+C.