Evaluate:∫dx1+4sinx+3cosx
Putting sinx=1−tan2(x2)1+tan2(x2) and cosx=2tan(x2)1+tan2(x2) , we have
∫dx1+4sinx+3cosx
=∫11+41−tan2(x2)1+tan2(x2)+32tan(x2)1+tan2(x2)dx
=∫1+tan2(x2)5+6tan(x2)−3tan2(x2)dx
=∫sec2(x2)dx5+6tan(x2)−3tan2(x2)
Let tanx2=t⇒sec2x2dx=dt
Thus above integral can be written as
∫dt5+6t−3t2
=−13∫dtt2−2t−53
=−13∫dt(t−1)2−(2√23)2
=−√312√2log∣∣∣√3t−√3−2√2√3t−√3+2√2∣∣∣+c ............ Using ∫1x2−a2dx=12alog∣∣∣x−ax+a∣∣∣+c
Putting t=tanx2 ,we have I=−√312√2log∣∣ ∣ ∣∣√3tanx2−√3−2√2√3tanx2−√3+2√2∣∣ ∣ ∣∣+c