∫dx3cosx+4sinx+6
As we know that,
cosx=1−tan2(x2)1+tan2(x2) and sinx=2tan(x2)1+tan2(x2)
∴∫dx3cosx+4sinx+6=∫dx31−tan2(x2)1+tan2(x2)+42tan(x2)1+tan2(x2)+6
=∫1+tan2(x2)dx3(1−tan2(x2))+8tan(x2)+6(1+tan2(x2))
⇒=∫1+tan2(x2)dx3−3tan2(x2)+8tan(x2)+6+6tan2(x2)
⇒=∫sec2(x2)dx3tan2(x2)+8tan(x2)+9[∵1+tan2θ=sec2θ]
Let tan(x2)=u
⇒12sec2(x2)dx=du
⇒sec2(x2)dx=2du
∴∫sec2(x2)dx3tan2(x2)+8tan(x2)+9=∫2du3u2+8u+9
⇒=∫2du3(u2+83u+3)
⇒=23∫du(u+43)2−169+3
⇒=23∫du(u+43)2+119
⇒=23∫du(u+43)2+(√113)2
Now the integral is in the form of ∫dxx2+a2.
∴23∫du(u+43)2+(√119)2=23×3√11tan−1⎛⎜
⎜
⎜
⎜⎝u+43√119⎞⎟
⎟
⎟
⎟⎠+c[∵∫dxx2+a2=1atan−1xa+c]
⇒=2√11tan−1⎛⎜
⎜
⎜
⎜⎝u+43√119⎞⎟
⎟
⎟
⎟⎠+c
As u=tanx2,
∴2√11tan−1⎛⎜
⎜
⎜
⎜⎝u+43√119⎞⎟
⎟
⎟
⎟⎠+c=2√11tan−1⎛⎜
⎜
⎜
⎜⎝tanx2+43√119⎞⎟
⎟
⎟
⎟⎠+c
Hence the required answer is ∫dx3cosx+4sinx+6=2√11tan−1⎛⎜
⎜
⎜
⎜⎝tanx2+43√119⎞⎟
⎟
⎟
⎟⎠+c.