wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate dx3cosx+4sinx+6

Open in App
Solution

dx3cosx+4sinx+6
As we know that,
cosx=1tan2(x2)1+tan2(x2) and sinx=2tan(x2)1+tan2(x2)
dx3cosx+4sinx+6=dx31tan2(x2)1+tan2(x2)+42tan(x2)1+tan2(x2)+6
=1+tan2(x2)dx3(1tan2(x2))+8tan(x2)+6(1+tan2(x2))
=1+tan2(x2)dx33tan2(x2)+8tan(x2)+6+6tan2(x2)
=sec2(x2)dx3tan2(x2)+8tan(x2)+9[1+tan2θ=sec2θ]
Let tan(x2)=u
12sec2(x2)dx=du
sec2(x2)dx=2du
sec2(x2)dx3tan2(x2)+8tan(x2)+9=2du3u2+8u+9
=2du3(u2+83u+3)
=23du(u+43)2169+3
=23du(u+43)2+119
=23du(u+43)2+(113)2
Now the integral is in the form of dxx2+a2.
23du(u+43)2+(119)2=23×311tan1⎜ ⎜ ⎜ ⎜u+43119⎟ ⎟ ⎟ ⎟+c[dxx2+a2=1atan1xa+c]
=211tan1⎜ ⎜ ⎜ ⎜u+43119⎟ ⎟ ⎟ ⎟+c
As u=tanx2,
211tan1⎜ ⎜ ⎜ ⎜u+43119⎟ ⎟ ⎟ ⎟+c=211tan1⎜ ⎜ ⎜ ⎜tanx2+43119⎟ ⎟ ⎟ ⎟+c
Hence the required answer is dx3cosx+4sinx+6=211tan1⎜ ⎜ ⎜ ⎜tanx2+43119⎟ ⎟ ⎟ ⎟+c.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon