wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate : secx1+cosec xdx

Open in App
Solution

secx1+cosec xdx=1cosx(1+1sinx)dx

=sinxcosx(sinx+1)dx

=sinxcosxcos2x(1+sinx)dx

=sinxcosx(1sin2x)(1+sinx)dx

=sinxcosx(1sinx)(1+sinx)(1+sinx)dx

=sinxcosx(1sinx)(1+sinx)2dx

Now, let sinx=t, on differentiating, we get
cosxdx=dt
secx1+cosec xdx=t(1+t)(1+t)2dt

Let t(1t)(1+t)2=A1t+B1+t+C(1+t)2

t=A(1+t)2+B(1t)(1+t)+C(1t) ...(i)

On putting t=1 and t=1, we get
1=A4 and 1=C2
A=14 and C=12

On equating coefficient of t2 on both sides of (i), we get
0=AB
B=A=14
secx1+cosec xdx=1411tdt+14dt1+t12dt(1+t)2

=14log|1t|1+14log|1+t|12(1+t)11+c

=14log1+t1t+12(1+t)+c

=14log1+sinx1sinx+12(1+sinx)+c.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon