wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: sin3x(cos4x+3cos2x+1)tan1(secx+cosx)dx

A
tan1(secx+cosx)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
loge|tan1(secx+cosx)|+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
1(secx+cosx)2+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
tan1(cotx+cosecx)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B loge|tan1(secx+cosx)|+c
we have to evaluate
I=sin3 x(cos4x+3 cos2+1)tan1(sec x+cos x)dx

Let us assume tan1(sec x+cos x)=t

then,
11+(sec x+cos x)2.(sec x.tan xsin x)dx=dt

11+(1cos x+cos x)2.(sin xcos2 xsin x)dx=dt

cos2 xcos2 x+(1+cos2 x)2.(sin xsin xcos2 x)cos2 xdx=dt

sin x(1cos2x)cos2x+1+cos4x+2cos2xdx=dt


sin3xcos4x+3cos2x+1dx=dt

I=sin3x(cos4x+3cos2+1)tan1(sec x+cos x)dxdtt

I=loge|t|+c

I=logetan1(sec x+cos x)+C

Correct answer is option B.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon