wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate sinx(cos2x+1)(cos2x+4)dx.

Open in App
Solution

I=sinx(cos2x+1)(cos2x+4)dx

Put cosx=tsinx dx=dt

Therefore,
I=dt(t2+1)(t2+4) .......(1)

Again, consider t2=y

Then, 1(y+1)(y+4)=Ay+1+By+4

1=A(y+4)+B(y+1)
1=(A+B)y+4A+B

On equating the coefficient of y and constant term both sides, we get,
0=A+B
and 1=4A+B

A=13 and B=13

Therefore,
1(y+1)(y+4)=13(y+1)+13(y+4)

1(t2+1)(t2+4)=13(t2+1)+13(t2+4)

From equation 1, we get,
I=13(t2+1)dt+13(t2+4)dt

I=13×tan1t+13×12tan1t2+C ............. 1a2+x2dx=1atan1(xa)+c

I=13tan1t+16tan1t2+C

I=13tan1(cosx)+16tan1(cosx2)+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon