Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1√2cot−1(x2−1√2x)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1√2tan−1(x2+1√2x)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1√2cot−1(x2+1√2x)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A1√2tan−1(x2−1√2x)+C I=∫x2+1x4+1dx∫1+1x2x2+1x2dx=∫1+1x2(x−1x)2+2dx Let x−1x=tord(x−1x)=dtor(1+1x2)dx=dt ∴I=∫dtt2+(√2)2=1√2tan−1t+C =1√2tan−1⎛⎜
⎜
⎜⎝x−1x√2⎞⎟
⎟
⎟⎠+C=1√2tan−1(x2−1√2x)+C