Consider given the given integration,
I=∫1−log1vv2dv
I=∫1dv−∫log1vv2dv=v−∫log1vv2dv …..(1)
Let,
y=∫log1vv2dv
Put,
t=1v
dt=−1v2dv
dv=−v2dt
y=∫−v2logtv2dv=−∫(logt).1dt
=−[logt.t−∫1t.tdt]
=−t.logt+t+C
y=−1v2log1v2+1v2+C
Put, the value of in equation (1),we get
I=v−(−1v2log1v2+1v2+C)
I=v+1v2log1v2−1v2−C
Hence, this is the answer,