The correct option is A 2cos−1√x−2log[1+√1−x√x]
Let I=∫[1−√x1+√x]1/2dxx
Substitute x=cos22θ,1−cos2θ1+cos2θ=tan2θ⇒dx=−4cos.sin2θdθ
I=−4∫sinθcosθ.cos2θ(2sinθ.cosθ)cos22θdθ=−4∫2sin2θcos2θdθ
=−4∫(1−cos2θ)cos2θdθ=−4∫(sec2θ−1)dθ=−4[12log(sec2θ+tan2θ)−θ]
I=4θ−2log[sec2θ+√sec22θ−1]
Now put cos2θ=√x⇒θ=12sec−11√x=12cos−1√x
I=2cos−1√x−2log[1√x+√1x−1]=2cos−1√x−2log[1+√1−x√x]