wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate:
π/4 0(x3+xcosx+tanx+1)dx

Open in App
Solution

xcosx=xcosxdx[d(x)dx.cosx.dx.]dx ........ (Integration by parts)
=xsinx.1.sinxdx
= x sin x + cos x _____________ (1)
=π40(x3+xcosx+tanx+1)dx
=π40x3+π40xcosxdx+π40tanx.dx+π401dx
=(x44)π40+(xsinx+cosx)π40+(log|secx|)π40+(x)π40
=x445+[π4sinπ4+cosπ4cos]+logsecπ4log(sec(0))+π40
=x41024+(π4×12+121)+log(2)0+π4 (log1=0)
=x41024+π4(12+1)+121+12log2

1222786_1298038_ans_a069ce3f473d4853b3272328cb29f52b.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon