1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration by Parts
Evaluate ∫ ...
Question
Evaluate
∫
(
tan
(
e
x
)
+
x
e
x
.
sec
2
(
e
x
)
)
d
x
A
x
−
tan
(
e
x
)
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x
tan
(
e
x
)
+
c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
x
tan
(
e
−
x
)
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x
−
tan
(
e
−
x
)
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
x
tan
(
e
x
)
+
c
I
=
∫
(
tan
(
e
x
)
+
x
e
x
.
sec
2
(
e
x
)
)
d
x
=
∫
tan
(
e
x
)
d
x
+
∫
x
e
x
.
sec
2
(
e
x
)
d
x
=
I
1
+
I
2
I
1
=
∫
1.
tan
(
e
x
)
d
x
We have,
∫
u
.
v
d
x
=
u
∫
v
d
x
−
∫
(
d
u
d
x
∫
v
d
x
)
d
x
I
1
=
x
tan
(
e
x
)
−
∫
d
{
tan
(
e
x
)
}
d
x
x
.
d
x
+
c
, Using integral by parts.
=
x
tan
(
e
x
)
−
∫
x
e
x
.
sec
2
(
e
x
)
d
x
+
c
=
x
tan
(
e
x
)
−
I
2
+
c
⇒
I
=
I
1
+
I
2
=
x
tan
(
e
x
)
+
c
Suggest Corrections
0
Similar questions
Q.
equals
A. − cot (
ex
x
) + C
B. tan (
xe
x
) + C
C. tan (
e
x
) + C
D. cot (
e
x
) + C