Evaluate ∫x3ln2xdx
(where C is constant of integration)
A
x44(ln2x−lnx2+18)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
−x44(ln2x−lnx2+18)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x44(ln2x+lnx2+18)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−x44(ln2x−lnx2−18)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ax44(ln2x−lnx2+18)+C Let I=∫x3ln2xdx
Using ILATE, we get I=(ln2x)⋅x44−∫x44⋅(2⋅lnx)1xdx⇒I=x4ln2x4−12∫x3lnxdx
Again using ILATE, we get ⇒I=x44ln2x−12[lnxx44−∫x44⋅1xdx]⇒I=x44ln2x−18(lnx)x4+18⋅x44+C ⇒I=x44(ln2x−lnx2+18)+C