Given, (a2b+2ba)2−(a2b−2ba)2−4.
We know, (a+b)2=a2+2ab+b2
and (a−b)2=a2−2ab+b2.
Then,
(a2b+2ba)2−(a2b−2ba)2−4
=[(a2b)2+(2ba)2+2(a2b)(2ba)]−[(a2b)2+(2ba)2−2(a2b)(2ba)]−4
=(a2b)2+(2ba)2+2−(a2b)2−(2ba)2+2−4
=0.
Therefore, option A is correct.