wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: limn(cosx2cosx4cosx8...cosx2n)

A
xsinx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
sinxx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B sinxx
limn(cosx2cosx4cosx8...cosx2n)

2sinx2n2sinx2n(cosx2cosx4cosx8....cosx2n)
=2×(cosx2cosx4cosx8....cosx2n1sinx2n1)2×2sinx2n
=2cosx2sinx22nsinx2n=xsinx12nxsinx2n
=sinxx×x2nsinx2n
limn(cosx2cosx4cosx8....cosx2n)=limnsinxx×x2nsinx2n[n;x2n0]
=sinxx×1

=sinxx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon