wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate 20exdx as a limit of sum.

Open in App
Solution

Consider, I=20exdx

baf(x)dx=limh0h(f(a)+f(a+h)+....f(a+(n1)h)

=(ba)limn1n(f(a)+f(a+h)+....f(a+(n1)h)

h=(ba)n

20exdx=(20)limn1n(e0+e2n+e8n+.....e2n2n)

Using sum to n terms of a GP
20exdx=2limn1n⎜ ⎜ ⎜e2nn1e2n1⎟ ⎟ ⎟=2limn1n⎜ ⎜ ⎜e21e2n1⎟ ⎟ ⎟

=2(e21)2limn1n⎜ ⎜ ⎜e2n12n⎟ ⎟ ⎟=e21

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon