The correct option is
D −iSince, cosθ+isinθ=eiθ
6∑k=1[sin2kπ7−icos2kπ7]=−i6∑k=1[cos(2kπ7)+isin(2kπ7)]=−i6∑k=1ei2kπ7
Solving the index part only which is
i2kπ7=i2π7(1+2+3+⋯+6)......[putting the values of k]
=i6π
So,
−i∑6k=1ei2kπ7=−iei6π=−i(cos6π+sin6π)=−i