wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate each of the following integrals:

02πlogsecx+tanxdx

Open in App
Solution


Let I = 02πlogsecx+tanxdx .....(1)

Then,

I=02πlogsec2π-x+tan2π-xdx 0afxdx=0afa-xdx=02πlogsecx-tanxdx .....2

Adding (1) and (2), we get

2I=02πlogsecx+tanx+logsecx-tanxdx2I=02πlogsec2x-tan2xdx2I=02πlog1dx 1+tan2x=sec2x2I=0 log1=0I=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon