∫10(2x+1)dx
Evaluating integral as a limit of sum
∫baf(x)d=(b−a)limn⟶∞1n[f(a)+f(a+h)+...f(a+(n−1)h)]
Where h=b−an
here, a=0,b=1 h=1n
=limn⟶∞1n[f(0)+f(1n)+f(2n)+....f(n−1n)]=limn⟶∞1n[1+2n+1+2.2n+1+...2(2−1)n+1]=limn⟶∞1n[(1+1+...1)+2n(1+2+...n−1)]=limn⟶∞1n[n+2n×(n−1)(n)2]=limn⟶∞1n(2n−1)=limn⟶∞1n(2−1n)=2
Answer