1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration Using Substitution
Evaluate I=...
Question
Evaluate
I
=
∫
x
2
+
4
x
4
+
16
d
x
.
A
=
1
4
√
2
tan
−
1
(
x
2
+
4
4
x
√
2
)
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
=
1
4
√
2
tan
−
1
(
x
2
+
x
+
4
4
x
√
2
)
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
=
1
2
√
2
tan
−
1
(
x
2
−
4
2
x
√
2
)
+
C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
C
=
1
2
√
2
tan
−
1
(
x
2
−
4
2
x
√
2
)
+
C
I
=
∫
x
2
+
4
x
4
+
16
d
x
=
∫
1
+
4
x
2
x
2
+
16
x
2
d
x
=
∫
1
+
4
x
2
x
2
+
(
4
x
)
2
−
8
+
8
d
x
=
∫
1
+
4
x
2
(
x
−
4
x
)
2
+
8
d
x
Put
x
−
4
x
=
t
.
⇒
(
1
+
4
x
2
)
d
x
=
d
t
∴
I
=
∫
d
t
t
2
+
(
2
√
2
)
2
=
1
2
√
2
tan
−
1
(
t
2
√
2
)
+
C
=
1
2
√
2
tan
−
1
(
x
2
−
4
2
x
√
2
)
+
C
Suggest Corrections
0
Similar questions
Q.
Evaluate
∫
x
dx
(
x
−
1
)
(
x
2
+
4
)