wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: 1cos4x+sin4xdx.

Open in App
Solution

Let I=dxcos4x+sin4x

=1cos4xdx1+tan4x

=sec2x.sec2xdx1+tan4x

=(1+tan2x)sec2xdx1+tan4x

Put tanx=tsec2xdx=dt
=(1+t2)dt1+t4

(1t2+1)dt1t2+t2dt

=(1+1t2)dt(t1t)2+2

Put t1t=z(1+1t2)dt=dz
=dzz2+2=12tan1z2+C

12tan112(t1t)+C

=12tan112(tanx1tanx)+C

=12tan112(tanxcotx)+C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon