wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate 13sinx+cosxdx

Open in App
Solution

We have,

I=(13sinx+cosx)dx

I=12⎜ ⎜ ⎜ ⎜132sinx+12cosx⎟ ⎟ ⎟ ⎟dx

I=12⎜ ⎜1sinπ3sinx+cosπ3cosx⎟ ⎟dx

I=12⎜ ⎜ ⎜ ⎜1cos(xπ3)⎟ ⎟ ⎟ ⎟dx

I=12sec(xπ3)dx

We know that

secxdx=log|secx+tanx|+C

Therefore,

I=12[logsec(xπ3)+tan(xπ3)]+C

Hence, the value of integral is 12[logsec(xπ3)+tan(xπ3)]+C.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon