We have,
I=∫(1√3sinx+cosx)dx
I=12∫⎛⎜ ⎜ ⎜ ⎜⎝1√32sinx+12cosx⎞⎟ ⎟ ⎟ ⎟⎠dx
I=12∫⎛⎜ ⎜⎝1sinπ3sinx+cosπ3cosx⎞⎟ ⎟⎠dx
I=12∫⎛⎜ ⎜ ⎜ ⎜⎝1cos(x−π3)⎞⎟ ⎟ ⎟ ⎟⎠dx
I=12∫sec(x−π3)dx
We know that
∫secxdx=log|secx+tanx|+C
Therefore,
I=12[log∣∣∣sec(x−π3)+tan(x−π3)∣∣∣]+C
Hence, the value of integral is 12[log∣∣∣sec(x−π3)+tan(x−π3)∣∣∣]+C.