We have,
I=∫√x2−a2xdx
putx=asecθ
dx=asecθ.tanθdθ
Therefore,
I=∫√a2sec2θ−a2asecθ.asecθtandθ=∫a√(sec2θ−1).tanθdθ=a∫tan2dθ=a∫(sec2θ−1)dθ=atanθ−a.θ+c
On putting the value of θ, we get
=a.√x2−a2a.asec−1(xa)+c=√x2−a2−asec−1(xa)+c
Hence, this is the answer.