wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate
ex(tanx+1)secxdx

Open in App
Solution

I=ex(tanx+1)secxdx=extanxsecxdx+exsecxdx

According to the integration by parts,
uvdx=uvdx(dudx×vdx)dxHere,u=secxv=exSo,secxexdx=secxexdx(dsecxdx×exdx)dx=exsecx(secxtanxex)dxSo,I=(secxtanxex)dx+exsecx(secxtanxex)dx=exsecx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon