I=∫1sin4 x+sin2 x cos2 x+cos4 xdx
Divide numerator and denominator by cos4 x
=∫sec4 xtan4 x+tan2 x+1dx,
[Put tan x=t, tan2 x=t2, sec2 x=1+t2, sec2 x dx=dt]
= ∫(1+t2)dtt4+t2+1, [Divide numerator and denominator by t2]
= ∫(1t2+1)t2+1t2+1dt,[Put t−1t=u,(1+1t2)dt=du, t2+1t2−2=u2⇒t2+1t2=u2+2]
= ∫duu2+2+1
= ∫duu2+(√32)=1√3tan−1u√3
=1√3tan−1(t−1t√3)=1√3tan−1(t2−1t√3)
= 1√3tan−1(tan2 x−1(tan x)√3)+c