We have to find the value of
∫tan−1xdxIn order to find this, we use the formula ∫f−1(x)dx=xf−1(x)−∫f(y)dy , where y=f−1(x)
By the above formula, we get
∫tan−1xdx=xtan−1x−∫tanydy , where y=tan−1(x)
⟹∫tan−1xdx=xtan−1x−ln|cosy|+c
⟹∫tan−1xdx=xtan−1x−ln|cos(tan−1x)|+c
⟹∫tan−1xdx=xtan−1x+12ln(1+x2)+c