wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate -11log(1-x)+(1+x)dx


Open in App
Solution

Step 1. Find the value of -11log[(1-x)+(1+x)]dx:

Let I=-11log(1-x)+(1+x)dx

Let x=cos2θ

differentiate it with respect to θ

dx=-2sin2θdθ

When x=-1,cos2θ=cosπ cosπ=-1

2θ=π

θ=π2

When x=1,cos2θ=cos0 cos0=1

2θ=0

θ=0

Now, I=π20ln(1-cos2θ)+(1+cos2θ)-2sin2θdθ

I=π20ln2sin2θ+2cos2θ-2sin2θdθ

I=π20ln2sinθ+2cosθ-2sin2θdθ

I=π20ln2sinθ+cosθ-2sin2θdθ

I=π20ln2+lnsinθ+cosθ-2sin2θdθ ; log(ab)=loga+logb

I=π20ln2-2sin2θdθ+π20lnsinθ+cosθ-2sin2θdθ

I=ln2π20-2sin2θdθ+π20lnsinθ+cosθ-2sin2θdθ

I=ln2-2-cos2θ2π20-2π20lnsinθ+cosθsin2θdθ

I=ln2cos2θπ20-2π20lnsinθ+cosθsin2θdθ

Step 2. Apply the formula of integration by parts, we get

(u·v)dx=uvdx-{dudx.vdx}dx

I=ln2cos0-cosπ-2lnsinθ+cosθsin2θ-dlnsinθ+cosθdx.sin2θdθ

I=ln21--1-2lnsinθ+cosθsin2θ-dlnsinθ+cosθdx.sin2θdθ

I=2ln2+I1

I1=-2lnsinθ+cosθsin2θ-dlnsinθ+cosθdx.sin2θdθ

I1=-2lnsinθ+cosθ-cos2θ2π20+21cosθ+sinθ×-sinθ+cosθ×-cos2θ2dθ

I1=-2lnsin0+cos0-cos02-lnsinπ2+cosπ2-cosπ22+21cosθ+sinθ×-sinθ+cosθ×-cos2θ2dθ

I1=-2ln1-12-ln1+012+21cosθ+sinθ×-sinθ+cosθ×-cos2θ2dθ

I1=-20-0+21cosθ+sinθ×-sinθ+cosθ×-cos2θ2dθ

I1=0+21cosθ+sinθ×-sinθ+cosθ×-cos2θ2dθ

I1=2π20cosθ-sinθcosθ+sinθ-12cos2θdθ

I1=-2×-120π2cosθ-sinθcosθ+sinθcos2θdθ

I1=0π2cosθ-sinθcosθ+sinθcos2θ-sin2θdθ

I1=0π2cosθ-sinθ2dθ a2-b2=(a+b)(a-b)

I1=0π2cos2θ+sin2θ-2sinθcosθdθ (a-b)2=a2+b2-2ab

I1=0π21-sin2θdθ sin2θ=2sinθcosθ

I1=0π2dθ-0π2sin2θdθ

I1=θ0π2--cos2θ20π2

I1=π2-0+12cosπ-cos0

I1=π2+12-1-1

I1=π2-1

Step 3. Put the value of I1 in I=2ln2+I1, we get

I=2ln2+I1

I=2ln2+π2-1

I=2ln2-1+π2

Hence, -11log[(1-x)+(1+x)]dx=2ln2-1+π2.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon