sinπ8=2sinπ16cosπ16.......(2)
GIven: ⎛⎝1+cosΠ8−isinΠ81+cosΠ8+isinΠ8⎞⎠8
=(2cos2(π/16)−i2sin(π/16)cos(π/16)2cos2(π/16)+i2sin(π/16)cos(π/16))8
=(2cos(π/16)[cos(π/16)−isin(π/16)]2cos(π/16)[cos(π/16)+isin(π/16)])8
=(e−i(π/16)ei(π/16))8=(e−i(π/8))8=e−iπ=cosπ−isinπ=−1.