Consider,
log10(351539)+2log10(91110)−3log10(39110)
=log10(33×1372×11)+2log10(7×132×5×11)−3log10(3×132×5×11)
Applying inverse log property to the third term, ie., log(x−1)=log1x=−logx, we get
=log10(33×1372×11)+2log10(7×132×5×11)+3log10(2×5×113×13)
Using the exponents property on log, ie., nlogb=logbn, we can write;
=log10(33×1372×11)+log10(7×132×5×11)2+log10(2×5×113×13)3
=log10(33×1372×11)+log10(72×13222×52×112)+log10(23×53×11333×133)
Using the products property on log, ie., loga+logb=logab, we can write;
=log10(33×13×72×132×23×53×11372×11×22×52×112×33×133)
=log102×5=log1010
We know that, logaa=1
=1