wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate
log10(351539)+2log10(91110)=3log10(39110)

Open in App
Solution

Consider,
log10(351539)+2log10(91110)3log10(39110)

=log10(33×1372×11)+2log10(7×132×5×11)3log10(3×132×5×11)

Applying inverse log property to the third term, ie., log(x1)=log1x=logx, we get

=log10(33×1372×11)+2log10(7×132×5×11)+3log10(2×5×113×13)

Using the exponents property on log, ie., nlogb=logbn, we can write;

=log10(33×1372×11)+log10(7×132×5×11)2+log10(2×5×113×13)3

=log10(33×1372×11)+log10(72×13222×52×112)+log10(23×53×11333×133)

Using the products property on log, ie., loga+logb=logab, we can write;

=log10(33×13×72×132×23×53×11372×11×22×52×112×33×133)

=log102×5=log1010

We know that, logaa=1

=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Laws of Logarithms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon