The correct option is
A −iSince, cosθ+isinθ=eiθ
4∑k=1[sin2kπ5−icos2kπ5]=−i4∑k=1[cos(2kπ5)+isin(2kπ5)]=−i4∑k=1ei2kπ5
Solving the index part only which is
i2kπ5=i2π5(1+2+3+⋯+4)......[putting the values of k]
=i4π
So,
−i∑4k=1ei2kπ5=−iei4π=−i(cos4π+isin4π)=−i