wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate tan−1[5−x6x2−5x−3].

A
dydx = 2(2x+1)2+1 + 3(3x4)2+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
dydx = 1(2x1)2+1 + 2(3x+4)2+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
dydx = 2(2x+1)2+1 + 3(3x4)2+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
dydx = 2(2x+1)2+1 + 3(3x4)2+1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D dydx = 2(2x+1)2+1 + 3(3x4)2+1
y=tan1[5x6x25x3]
=tan1[5x6x25x4+1]
y=tan1[(2x+1)(3x4)1+(3x4)(2x+1)]
as we know tan1[ab1+ab]=tan1atan1b
y=tan1(2x+1)tan1(3x4)
now, dydx=ddx(tan1(2x+1))ddx(tan1(3x4))
=11+(2x+1)2211+(3x4)23
dydx=2(2x+1)2+13(3x4)2+1.

1170029_1060714_ans_30845d0e9dcb4aab828d30c4f97acdc9.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Improper Integrals
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon