Let I=∫102x+35x2+1dx
⇒∫2x+35x2+1dx=15∫5(2x+3)5x2+1dx
=15∫10x+155x2+1dx
=15∫10x5x2+1dx+∫15x2+1dx
=15∫10x5x2+1dx+3∫15(x2+15)dx
=15log(5x2+1)+35⋅11√5tan−1x1√5
=15log(5x2+1)+3√5tan−1(√5x)
By second fundamental theorem of calculus, we obtain
I=F(1)−F(0)
={15log(5+1)+3√5tan−1(√5)}−{15(1)+3√5tan−1(0)}
=15log6+3√5tan−1√5