Let I=∫π20cos2xcos2x+4sin2xdx
⇒I=∫π20cos2xcos2x+4(1−cos2x)dx
⇒I=∫π20cos2xcos2x+4−4cos2xdx
⇒I=−13∫π204−3cos2x−44−3cos2xdx
⇒I=−13∫π204−3cos2x4−3cos2xdx+13∫π2044−3cos2xdx
⇒I=−13∫π201dx+13∫π204sec2x4sec2x−3dx
⇒I=−13[x]π20+13∫π204sec2x4(1+tan2x)−3dx
⇒I=−π6+23∫π202sec2x1+4tan2xdx .............. (1)
Consider, ∫π202sec2x1+4tan2xdx
Let 2tanx=t⇒2sec2xdx=dt
When x=0,t=0 and when x=π2,t=∞
⇒∫π202sec2x1+4tan2xdx=∫∞0dt1+t2
=[tan−1t]∞0
=[tan−1(∞)−tan−1(0)]=π2
Therefore, from (1), we obtain
I=−π6+23[π2]=π3−π6=π6