Evaluate the definite integral ∫π40(2sec2x+x3+2)dx
Open in App
Solution
Let I=∫π40(2sec2x+x3+2)dx ⇒∫(2sec2x+x3+2)dx=2tanx+x44+2x=F(x) By second fundamental theorem of calculus, we obtain I=F(π4)−F(0) ={(2tanπ4+14(π4)4+2(π4))−(2tan0+0+0)} =2tanπ4+π445+π2 =2+π2+π41024